
[Demo Abstract] littleBits Synth Kit as a physically-embodied,
domain specific functional programming language

James Noble Timothy Jones
Victoria University of Wellington

kjx,tim@ecs.vuw.ac.nz

Abstract
littleBits (littleBits.cc) is an open-source hardware library of pre-
assembled analogue components that can be easily assembled into
circuits, disassembled, reassembled, and re-used. In this demo, we
consider littleBits — and the littleBits synth kit in particular —
as a physically-embodied domain specific functional programming
language, and how littleBits circuits can be considered as monadic
programs.

1. Introduction
littleBits (littleBits.cc) is an open-source hardware library of pre-
assembled analogue components that can be easily assembled into
circuits, disassembled, reassembled, and re-used [1]. Designed to
inspire and teach basic electrics and electronics to school-aged chil-
dren (and adults without a technical background) littlebits modules
clip directly onto each other. littleBits users can build a wide range
circuits and devices with “no programming, no wiring, no solder-
ing” [2] — even extending to a “Cloud Module” offering a connec-
tion to the internet, under the slogan “yup. no programming here
either [sic]” [4].

The littleBits system comes packaged as a number of kits:
“Base”, “Premium” and “Deluxe” kits with 10, 14, and 18 modules
respectively; and a series of booster kits containing lights, triggers,
touch sensors, and wireless transceivers. littleBits have recently
introduced special purpose kits in conjunction with third party
organisations, notably a “Space Kit” designed in conjunction with
NASA, and a “Synth Kit” designed in conjunction with KORG
that contains the key components of an analogue modular music
synthesizer.

Figure 1 shows the one of the simplest circuits in the littleBits
synth kit — indeed, the simplest littleBits circuit that can actually
make any sound. This circuit is composed of three simple modules
— a power module on the left, an oscillator module in the centre,
and a speaker module on the right. The power module accepts
power from a nine volt battery (or a 9V guitar pedal mains adapter)
and provides that power to “downstream” modules — as seen in
the figure, littleBits circuits flow in a particular direction, and all
modules are oriented so that this flow is left to right.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FARM’14, Sep 06 - September 06 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3039-8/14/09.
http://dx.doi.org/10.1145/2633638.2633639

Figure 1. A simple littleBits Synth Kit circuit. From left to right,
the three modules are a power source, an oscillator, and a speaker

In spite of littleBits’ marketing slogans, in this demo, we anal-
yse littleBits —- and the littleBits Synth Kit in particular — as a
live physically-embodied monadic functional domain specific pro-
gramming language. If building littleBits circuits is programming,
then performing music with the littleBits Synth Kit (configuring
modules to construct an analogue music synthesizer, and then pro-
ducing sounds with that synthesizer) can be considered as a music
performance by live programming — a.k.a. “livecoding” [7] — es-
pecially as the circuit construction typically occurs simultaneously
with sound production.

2. SynthKit as an Embodied Functional DSL
In this section we show how building SynthKit circuits can be con-
sidered as programming in a monadic functional DSL, by model-
ing the littleBits SynthKit in Haskell. The linear nature of littleBits
composition is mapped to the monadic bind, with secondary inputs
and outputs manually managed by the programmer. The underlying
monad is a standard state monad over a directed circuit graph.

The littleBits type LB is a opaque datatype with an accompa-
nying ClipState kind that tags the type, indicating whether the cir-
cuit’s input on the left is open (O), or clipped into a power source
(P ). Like the real littleBits, the output end on the right of any circuit
is always open. The partially applied type constructor is a Functor
for either of the two states.

data ClipState = O | P
data LB (s :: ClipState) a

instance Functor (LB s)

An open circuit can have a battery clipped into its input, which
provides it with power and closes off the input.

battery :: LB O a → LB P a

Any two littleBits sequences may be clipped together, where
the sequence on the right must have its input open. The resulting
sequence has the same clip state as the sequence on the left, as that
is also the left end of the new circuit.

clip :: LB s a → LB O b → LB s b

61



When s ∼ O, the type of clip matches the monadic operator
(>>) for the monad LB O . We can implement the required func-
tionality of (>>=) by extracting the value in the computation on the
left, applying it to the bound function, and then clipping the original
and resulting circuits together.

instance Monad (LB O) where (>>) = clip

LB P is not a monad (or an applicative functor), as there is no
composition between its instances to represent the bind operation.

The simplest form of littleBits module is the ‘Wire’, which
connects two circuits without doing anything in between. In the
physical embodiment, it provides some slack between circuits. As
a component in the DSL, it’s useful when you need a circuit but
you don’t want to do anything – like the real Wire component, it
just gives you a little slack.

wire :: LB O ()
wire = return ()

The remaining modules are opaque implementations that add
their corresponding circuits to the underlying state. Purely linear
modules just result in (), like wire above, but modules with sec-
ondary outputs that branch from the linear path of the circuit take
an open circuit and return a powered form of the same circuit. For
instance, the keyboard module provides a secondary trigger output,
so the corresponding function in the DSL takes an open circuit to
plug into that output.

keyboard :: Key → LB O a → LB O (LB P a)

The resulting value of type LB P a represents the same circuit as
the parameter to keyboard , but this new form is now powered by
the secondary output of the keyboard. When no output is desired,
wire can be given as the parameter and the return result ignored.

The filter module takes a secondary input that represents fre-
quency. In the DSL, the corresponding function takes a circuit
to plug into this input. The value in the input circuit is threaded
through into the resulting circuit.

filter :: Knob → Knob → LB s a → LB O a

With physical littleBits, the input circuit need not be powered, in
which case it simply has no effect. We could choose to insist that
the input be powered by replacing s with P .

As secondary outputs return the newly powered circuit, that
circuit can be plugged back in to another module further down.

example :: LB O ()
example = do

trigger ← keyboard D wire
oscillator 20 40
filter 80 50 trigger
speaker

The LB s monad and accompanying functions forms a DSL for
building littleBits circuits, not for the circuits themselves (which
might be better served by Arrows of voltages). Once a circuit is
built, it can be rendered and run as an IO action.

play :: LB s a → IO a

Note that the circuit does not necessarily need to be powered before
attempting to play it, as there may be other circuits attached as
secondary inputs that have power of their own.

3. Livecoding with littleBits
If building and configuring circuits with littleBits can be considered
as a form of embodied, tangible, programming, then performing
music “live” with littleBits can be considered as a form of live-
coding — performance programming to produce music [3, 5, 7]

— or in this case both building and playing synthesizers as a live
performance. In this section we describe our practice livecoding lit-
tleBits, and compare and contrast with typically textual livecoding
(inasmuch as typical livecoding practice can be supposed to exist).

This section in particular draws on the first author’s experience
livecoding/performing littleBits with “Selective Yellow”, an exper-
imental improvisation duo of indeterminate orthography drawing
on New Zealand’s heritage of experimental music practice [6, 9]
that seeks to recreate (electronically) all the worst excesses of free
jazz with all the enthusiasm of antisocial teenagers meeting their
first MOS6851. Selective Yellow is still a relatively young project,
probably only Grade 2 as evaluated by Nilson [8].

Livecoding with littleBits involves two main activities that are
tightly interleaved in a performance, first building the circuits by
clipping modules together, and second “playing” the resulting syn-
thesizer by turning the shafts, thumbwheels, switches, the “keys”
on the keyboard module to actually generate sound. Generally a
performance — or rather the portion of the performance impro-
vised upon littleBits — starts with the smallest possible sound-
generating circuit, typically the single unmodulated oscillator in
figure 1. Once the littleBits are assembled (and the speaker mod-
ule’s output patched into the sound system) we can manipulate
the oscillator’s pitch and output waveform. Depending on the con-
text of the improvisation, the possibilities of such a straightforward
sound generator will be more or less quickly exhausted, at which
point the performer will disassemble the circuit, insert one or more
additional modules (a second oscillator, a filter, or perhaps a key-
board or sequencer module) and then continue playing the result-
ing circuit. In this overall pattern, littleBits livecoding is similar
to some textual livecoding, where performers typically start with a
single texture and build a more complex improvisation over time.

4. Conclusion
In this demo we have described the littleBits KORG Synth Kit,
described how it is played (or programmed). We have argued the
Synth Kit can be considered an embodied functional program-
ming language, and presented a monadic Haskell DSL model of
the Synth Kit to that end, and have begun to situate our practice
performing with the Synth Kit as livecoding in that programming
language.

Acknowledgements
Thanks to Chris Wilson, the other half of Selective Yellow.

References
[1] A. Bdeir. Electronics as material: littleBits. In Proc. Tangible and

Embedded Interaction (TEI), pages 397–400, 2009.
[2] A. Bdeir. littleBits, big ambitions! http://littlebits.cc/-

littlebits-big-ambitions, Apr. 2013.
[3] A. Blackwell, A. McLean, J. Noble, and J. Rohrhuber. Collaboration

and learning through live coding (Dagstuhl Seminar 13382). Dagstuhl
Reports, 3(9):130–168, 2014.

[4] littleBits. Sneak peek: The cloud block. http://littlebits.cc/-
cloud, May 2014.

[5] T. Magnusson. Herding cats: Observing live coding in the wild. Com-
puter Music Journal, 38(1):8–16, 2014.

[6] D. McKinnon. Centripetal, centrifugal: electroacoustic music. In
G. Keam and T. Mitchell, editors, HOME, LAND and SEA: Situating
music in Aotearoa New Zealand, pages 234–244. Pearson, 2011.

[7] A. McLean, J. Rohrhuber, and N. Collins. Special issue on live coding.
Computer Music Journal, 38(1), 2014.

[8] C. Nilson. Live coding practice. In New Interfaces for Musical
Expression (NIME), 2007.

[9] B. Russell, editor. Erewhon Calling: Experimental Sound in New
Zealand. The Audio Foundation and CMR, 2012.

62




