
Beyond Types: Extending the Gradual Guarantee

James Noble
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

Michael Homer
Victoria University of Wellington

mwh@ecs.vuw.ac.nz

Timothy Jones
Victoria University of Wellington

tim@ecs.vuw.ac.nz

Sophia Drossopolou
Imperial College, London

scd@doc.ic.ac.uk

Andrew P. Black
Portland State University

black@cs.pdx.edu

Kim. B. Bruce
Pomona College, CA

kim@cs.pomona.edu

Abstract
The gradual guarantee lets us understand gradual typing: a system
is gradually typed if removing a type annotation cannot change the
semantics of a correct program. We extend the gradual guarantee
beyond types: privacy annotations or inheritance restrictions, for
example, may be gradual if changing them does not change the
semantics of a correct program.

1. Introduction
Gradual typing is increasingly of interest in programming language
design [1, 2]. Whether a type system is actually gradual or not can
be determined by considering the gradual guarantee:

The gradual guarantee says that if a gradually typed
program is well typed, then removing type annotations al-
ways produces a program that is still well typed. Further,
if a gradually typed program evaluates to a value, then re-
moving type annotations always produces a program that
evaluates to an equivalent value.

Refined Criteria for Gradual Typing.
Siek, Vitousek, Cimini, Tang Boyland [3].

There are more things in programming languages, however,
than are dreamt of in this philosophy. Encapsulation, fixity, muta-
bility, and incompleteness are typically addressed in programming
languages using other kinds of annotations, just not type annota-
tions. Can the gradual guarantee be generalised to these annotations
also?

2. Example
Consider the Grace program shown in Fig. 1

The class jeremy declares a method bolognese that is anno-
tated confidential (roughly equivalent to Java’s protected, but per
instance): removing this annotation will not change the semantics
of a correct program, because that change makes the bolognese
method more accessible throughout the program. (Note that meth-
ods are public by default in Grace, and are invoked without gratu-
itous BCPL-derived “()” syntax.) If the program is correct, then it
cannot request bolognese other than on self. On the other hand, the
var iable is annotated is public because variables are confidential by
default in Grace: removing that annotation would cause a program
that accessed the variable from outside a jeremy object to fail.

The method confusing is annotated private; assuming a Java-like
semantics for private, this means the call of confusing inside the
body of spaghetti is statically bound. When considering an object

class jeremy {
method bolognese is confidential { print "harry lime" }
var iable is public := 42
method spaghetti { confusing }
method confusing is private { print "confusing jeremy" }

}

method john {
var jsPrivate := 23
return object {
inherit jeremy
method confusing { print "confusing john" }

}
}

var j := john
j.bolognese // error. method not accessible
j.iable // returns 42 unless public annotation removed
j.confusing // prints ”confusing john”
j.spaghetti // prints ”confusing jeremy”
j.jsPrivate // error. request not understood

Figure 1. A Grace program

such as john which inherits from jeremy, removing the annotation
would actually change the semantics of the program: with private,
the request to confusing inside the spaghetti method always resolves
to the definition in its defining jeremy class, and so that request can
never be overridden, whereas if the annotation is removed, then the
request to confusing is resolved via normal dynamic dispatch.

Finally, note that the method john effectively gets a private
variable jsPrivate, due to lexical scope. This is how private variables
are defined e.g. in Javascript and E: access restriction depends on
the topology of the program’s structure, not annotations enforcing
encapsulation rules.

3. Gradualism Beyond Types
We argue gradualism can apply to more than just types: many other
aspects of (or annotations on) programs can also be gradualised,
and as such can participate in an extended version of the gradual
guarantee. Our example shows three kinds of constructs:

restrictive constructs reduce the set of well formed programs and
permissible executions (“confidential”)

permissive constructs increase the set of well formed programs
and permissible executions (“public”)

STOP 2016 1 2016/7/8



semantic constructs alter programs’ behaviour (“private”)

Restrictive constructs can be gradualised in the same way as type
annotations: from this perspective, type annotations are one kind of
restrictive constructs. Permissive constructs can be gradualised “in
reverse”: adding a permissive annotation maintains the guarantee,
while removing one does not. Semantic constructs cannot be grad-
ualised because any change there will change the behaviour of the
program other than by raising an error, or suppressing one. (This is
one of the reasons why Grace doesn’t have a private annotation).

We can express an extended gradual guarantee by a simple cut-
and-paste of the gradual typing guarantee:

The extended gradual guarantee says that if a gradually
structured program is well formed, then removing restric-
tive annotations (or adding permissive annotations) always
produces a program that is still well formed. Further, if a
gradually structured program evaluates to a value, then re-
moving restrictive annotations (or adding permissive an-
notations) always produces a program that evaluates to an
equivalent value.

This approach is not limited to encapsulation. Java’s final is
a restrictive annotation that addresses mutability and inheritance;
@Override is another restrictive annotation that also addresses in-
heritance. Grace is toying with a fixity annotation, manifest, that
would require objects to be determinable at compile time. Being
able to gradualise these (or other) annotations offers many of the
same advantages as gradualising type annotations: we can ignore
annotations and program in a “scripting” style, while being sure
of how the semantics of the program will change if we start with
a “script” and later convert it into a “program”. As with gradual
types, such a refactoring is typically in the opposite direction to the

“arrow of gradualisation” which makes it easy to remove types (or
restrictions) rather than add them.

This definition also implies that many of the practical difficul-
ties related to gradual typing apply to other gradual constructs. If
the error raised by a restrictive annotation can be caught within the
program, then removing the error will cause a semantic change —
similarly for the lack of an error caused by the lack of a permissive
annotation. If the language includes constructs (such as reflection
or try/catch or typecase) that can detect the presence or absence
of annotations, then any detectable difference in the presence or
absence of an annotation may indirectly cause a semantic change.
Note that with this wording, the problem is not caused by constructs
or annotations that raise errors, but constructs that detect that errors
have been raised, or that otherwise introspect on the program.

This definition also raises questions for language designers: is
restriction better than permission? Are annotations preferable to
first-class constructs (e.g. Scala’s var and val versus Java’s restric-
tive final for mutability)? Are structural patterns (e.g. Javascript’s
lexical private) preferable to annotations or first-class constructs?

Acknowledgements
We thank the anonymous reviewers for their comments. This work
was supported in part by a James Cook Fellowship and by the Royal
Society of New Zealand Marsden Fund.

References
[1] John Tang Boyland. The problem of structural type tests in a gradual-

typed language. In FOOL, 2014.
[2] Jeremy G. Siek and Walid Taha. Gradual typing for functional lan-

guages. In Scheme and Functional Programming, 2006.
[3] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang

Boyland. Refined criteria for gradual typing. In SNAPL, 2015.

STOP 2016 2 2016/7/8


	Introduction
	Example
	Gradualism Beyond Types

