
Brand Objects for Nominal Typing

Timothy Jones, Michael Homer, and James Noble

Victoria University of Wellington
{tim,mwh,kjx}@ecs.vuw.ac.nz

July 8, 2015

Background

This Talk

More tagged types

The intersection of first-class structural and nominal types
Language design issues

Grace

Structurally typed
Classes are only sugar

Brand Objects

First-class nominal types
Both dynamic and static behaviour
Access managed with standard OO encapsulation

1 ECOOP’15

Background

Motivation

“structural types correspond to the conceptual model of
object-oriented programming where individual objects
communicate only via their interfaces, with their
implementations encapsulated”

— Jones et al.

2 ECOOP’15

Background

Motivation

“structural types correspond to the conceptual model of
object-oriented programming where individual objects
communicate only via their interfaces, with their
implementations encapsulated”

— Jones et al.

2 ECOOP’15

Background

Structural Typing

Only interface matters

let Person = type {
name → String

}

def me : Person = object {
method name → String { "Tim" }

}

3 ECOOP’15

Background

Structural Typing

Types are implicit

let Person = type {
name → String

}

def me = object {
method name → String { "Tim" }

}

3 ECOOP’15

Background

Motivation

“often frameworks require inheriting from a specific class
with specific hidden state”

— Sam Tobin-Hochstadt

4 ECOOP’15

Background

Motivation

“often frameworks require inheriting from a specific class
with specific hidden state”

— Sam Tobin-Hochstadt

4 ECOOP’15

Background

Why Grace

Why not address this problem using Racket?

First-class classes
Type erasure

Dialects aren’t #lang

5 ECOOP’15

Background

Why Grace

Why not address this problem using Racket?

First-class classes
Type erasure
Dialects aren’t #lang

5 ECOOP’15

Background

Motivation

“I do not see how a number object in Grace can for sure
recognize another number object in the first place”

— Marco Servetto

6 ECOOP’15

Background

Brands as Hybrids

Class names equipped with extra structural information

class Window { · · · }

method scrollUp(win : Window { scrollBar → ScrollBar }) {
win.scrollBar.position := 0

}

No structural type without a class name

Top type is Object {}

7 ECOOP’15

Background

Brand Objects

Objects are not associated with a class

let ScrollWindow = Window & type { scrollBar → ScrollBar }

method scrollUp(win : ScrollWindow) {
win.scrollBar.position := 0

}

Structural types are a separate construct

Top type is type {}

8 ECOOP’15

Background

Reification

Types are reified as objects at runtime

instanceof checks performed with a match() method

if(Person.match(me)) then {
print "I’m a person!"

}

Type-safe branching with match() case()

match(animal)
case { dog : Dog → · · · }
case { cat : Cat → · · · }

9 ECOOP’15

Background

Reification

Types are reified as objects at runtime

We just happen to (occasionally) reason about them statically

10 ECOOP’15

Background

Reification

Types are objects

We just happen to (occasionally) reason about them statically

10 ECOOP’15

Background

Reification

Types are objects

We just happen to (occasionally) reason about them statically

10 ECOOP’15

Brand Objects

Brand Objects

We can build new kinds of objects and treat them as types too

Brands are just objects: no language extensions needed

11 ECOOP’15

Brand Objects

Constructing a Brand

The brand method

let aSquare = brand

12 ECOOP’15

Brand Objects

Applying Brands

Branding an object

object is aSquare {
inherits shape.at(2 @ 5)
method area → Number { · · · }

}

Uses the existing annotation system

13 ECOOP’15

Brand Objects

Applying Brands

Branding a class

class square.at(location : Point)
withLength(length : Number) → Shape is aSquare {

inherits shape.at(location)
method area → Number { · · · }

}

14 ECOOP’15

Brand Objects

Brand Types

Brand objects are distinct from their corresponding types

let Square = aSquare.Type

class square.at(location : Point)
withLength(length : Number) → Square is aSquare {

inherits shape.at(location)
method area → Number { · · · }

}

Combined with structural types to build ‘full’ nominal types

15 ECOOP’15

Brand Objects

Brand Types

Brand objects are distinct from their corresponding types

let Square = aSquare.Type & Shape

class square.at(location : Point)
withLength(length : Number) → Square is aSquare {

inherits shape.at(location)
method area → Number { · · · }

}

Combined with structural types to build ‘full’ nominal types

15 ECOOP’15

Brand Objects

Inheritance

Inheritance preserves subtyping

def mySquare : Square = object {
inherits square.at(2 @ 5) withLength(20)

}

16 ECOOP’15

Brand Objects

Extending Brands

Branding the whole shape hierarchy

let aShape = brand
let Shape = aShape.Type

let aSquare = aShape.extend
let aCircle = aShape.extend

def mySquare : Square = object is aSquare {}

17 ECOOP’15

Brand Objects

Extending Brands

Branding the whole shape hierarchy

let aShape = brand
let Shape = aShape.Type

let aSquare = aShape.extend
let aCircle = aShape.extend

def mySquare : Shape = object is aSquare {}

17 ECOOP’15

Brand Objects

Extending Brands

Multiple subtyping

let aSquaredCircle = aSquare + aCircle

def mySquare : Square = object is aSquaredCircle { · · · }
def myCircle : Circle = mySquare

18 ECOOP’15

Brand Objects

Extending Brands

Works in both directions

let SquaredCircle = aSquaredCircle.Type

def both : SquaredCircle = object is aSquare, aCircle {}

19 ECOOP’15

Brand Objects

Permissions

See the ECMAScript strawman for Trademarks™
“Given the brander one can readily create a guard.
On the other hand, one cannot obtain the brander given
just the guard of a trademark. Thus the brander of a
trademark is a capability.”

20 ECOOP’15

Brand Objects

Permissions

Standard object encapsulation provides necessary restrictions

let aSquare is confidential = brand

let Square is public = aSquare.Type

Modules are just objects

21 ECOOP’15

Brand Objects

Branding Dialect

Is our language extensibility powerful enough to introduce
radically new type constructs?

22 ECOOP’15

Brand Objects

Branding Dialect

brand method, with dynamic behaviour

Accompanying static checker

All branding features also provided by the language

Dialect checking
Annotations
Encapsulation
First-class type interface

23 ECOOP’15

Brand Objects

Types as a Library

Building types using existing language constructs

Interesting for existing dynamically-typed languages

24 ECOOP’15

Brand Objects

Types as a Library

We claim it would be significantly more difficult to add structural
types to an existing nominally-typed (class-based) system

Syntax
Infrastructure
Reflection

More than just the sum

25 ECOOP’15

Brand Objects

‘Nominal’ Typing

Names remain irrelevant

Only the identity of the brand matters

Must be bound to a name to be useful

Static checker tracks brand identities as locally-bound definitions

Names are useful!

This is true for structural types as well
Mitigated with a little let magic

26 ECOOP’15

Brand Objects

‘Nominal’ Typing

There is exactly one use case for an anonymous brand

let None = brand.Type

27 ECOOP’15

Brand Objects

Static Reasoning

Dialect reasons about brands it can statically resolve

Observes each request to brand and introduces a new type

let aSquare = brand

The brand method returns a value of type Brand

28 ECOOP’15

Brand Objects

Static Reasoning

Behind the scenes, the type of each application is different

let aThing1 : Brand = brand

let aThing2 : Brand = brand

This isn’t really expressible in the syntax

(But it doesn’t need to be)

29 ECOOP’15

Brand Objects

Static Reasoning

Behind the scenes, the type of each application is different

let aThing1 : Brand〈aThing1〉 = brand

let aThing2 : Brand〈aThing2〉 = brand

This isn’t really expressible in the syntax

(But it doesn’t need to be)

29 ECOOP’15

Brand Objects

Static Reasoning

Brand is a regular type, and its values can be reasoned about

method using(aThing : Brand) {
let Thing = aThing.Type

def thing : Thing = object is aThing { · · · }

· · ·
}

30 ECOOP’15

Brand Objects

Static Reasoning

We don’t have dependent types

method make(aThing : Brand) → aThing.Type {
object is aThing { · · · }

}

Lee et al.

31 ECOOP’15

Formal Model

Formalisation

Extension to Tinygrace

32 ECOOP’15

Formal Model

Normalization

T ` τ X

T ` let X = τ . µX .τ
µX .τ contractive T ` B . B′

T ` let X = B . B′

T ` brand . β

β fresh
T ` X . X

let X = B ∈ T

T ` B1 . B′
1 T ` B2 . B′

2
T ` B1 + B2 . B′

1 + B′
2

33 ECOOP’15

Formal Model

Modifications

Existing + Branding

Tinygrace Unity Tagging
Syntax 7 + 4 9 + 5 5 + 5
Well-formedness 8 + 5 4 + 2 3 + 2
Subtyping 13 + 3 13 + 3 2 + 2
Term typing 5 + 1 9 + 2 6 + 4
Reduction 7 + 0 14 + 4 3 + 4

Total 40 + 13 49 + 16 19 + 17

34 ECOOP’15

Formal Model

Soundness

Branding has a minimal impact on soundness

35 ECOOP’15

Remaining Questions

Language Design Questions

What is a ‘type’?

The let definition

Use cases feed back into language design

36 ECOOP’15

Remaining Questions

Class-name types

Encode the one-brand-per-class pattern as an annotation

class Shape.new is nominal { · · · }

37 ECOOP’15

Conclusion

Types are whatever you want them to be!

So long as you can work out static reasoning for them

Libraries of types

With extensible language features

Easier to start with a structurally-typed base

Classes aren’t necessary for nominal typing

38 ECOOP’15

Links

tim@ecs.vuw.ac.nz

http://drops.dagstuhl.de/opus/volltexte/2015/5231/

http://ecs.vuw.ac.nz/~tim/publications/talks/ecoop2015.pdf

Kim’s talk tomorrow

39 ECOOP’15

tim@ecs.vuw.ac.nz
http://drops.dagstuhl.de/opus/volltexte/2015/5231/
http://ecs.vuw.ac.nz/~tim/publications/talks/ecoop2015.pdf

Extra Slides

40 ECOOP’15

Case Studies

The AST

Type hierarchy does not match node hierarchy

Custom pattern objects are not types

rule { vn : Var →
!vn.vallue.isImplicit

}

41 ECOOP’15

Case Studies

Exceptions

All exception objects have the same interface

We want to have a standard catch construct

catch { e : IOError →
print "An IO error occurred: {e}"

}

Moves an internal implementation into the language

42 ECOOP’15

Case Studies

Singleton and Empty Types

The empty structural type is the top type

We can build a proper unit type by branding exactly one object

let theUnit is confidential = brand
let Unit is public = theUnit.Type

def unit is public = object is theUnit {}

The Type of an anonymous brand is guaranteed to be empty

let None = brand.Type

43 ECOOP’15

Implementation

Brands as a dialect

brand constructor, with dynamic behaviour

Accompanying static checker

Remainder of features provided by the language

Dialect checking
Annotations
First-class type interface

44 ECOOP’15

Implementation

Brands as a case study

Is our language extensibility powerful enough?

let is new

Brands aren’t types
Unclear semantics for type declarations

45 ECOOP’15

Implementation

Pre-Branding

All brands are themselves branded

There must be some initial ‘pre-brand’

let BrandInterface = ObjectAnnotation & type {
Type → Pattern
extend → Brand
+(other : Brand) → Brand

}

class preBrand.new → BrandInterface { · · · }

46 ECOOP’15

Implementation

Pre-Branding

The brand constructor puts it all together

let aBrand = preBrand.new
let Brand = aBrand.Type & BrandInterface

method brand → Brand {
object is aBrand { inherits preBrand.new }

}

47 ECOOP’15

Implementation

Matching

Each brand is equipped with a weak set

When an object is branded, it is placed in the set

When asked to match() against an object, a brand’s Type checks
its presence in the set

48 ECOOP’15

Implementation

‘Nominal’ Typing

Names remain irrelevant

Only the identity of the brand matters

Must be bound to a name to be useful

Static checker tracks brand identities as locally-bound definitions

Names are useful!

This is true for structural types as well
Mitigated with a little let magic

49 ECOOP’15

Lack of imagination?

“Branding was, I think, a reasonable trade-off to make in
1983. I don’t think that it’s reasonable any longer.”

— Andrew Black

50 ECOOP’15

Pre-Branding

All brands are themselves branded

There must be some initial ‘pre-brand’

let BrandInterface = ObjectAnnotation & type {
Type → Pattern
extend → Brand
+(other : Brand) → Brand

}

class preBrand.new → BrandInterface { · · · }

51 ECOOP’15

Pre-Branding

The brand constructor puts it all together

let aBrand = preBrand.new
let Brand = aBrand.Type & BrandInterface

method brand → Brand {
object is aBrand { inherits preBrand.new }

}

52 ECOOP’15

AST Nodes
AST is used by the dialect type checkers
Many of the nodes have the same structural interface

let Decl = Node & type {
name → String
value → Expression
pattern → Expression

}

Cannot safely use types to match against different node kinds

match(decl)
case { varNode : Var → print "A var!" }
case { defNode : Def → print "A def!" }

53 ECOOP’15

AST Nodes

Branding the nodes provides distinct, nominal types

Depends on the implementation

(Requires brands to be part of the standard language)

54 ECOOP’15

Dialect Typing

Without brands, the node types are just run-time patterns

def Var = object {
inherits pattern.abstract

method match(o : Object) → MatchResult {
Decl.match(o).andAlso { m.kind ≡ "var" }

}
}

The type system doesn’t know that this is a type

55 ECOOP’15

Dialect Typing

Within a rule, the node is untyped

rule { varNode : Var →
if (varNode.vallue.isEmpty) then { · · · }

}

If the dialect is built in the branding dialect, all of the node
patterns can be treated as static types

56 ECOOP’15

Exceptions

The exception hierarchy can now be implemented in Grace

class exceptionKind.name(name : String)
brand(aKind : Brand) → ExceptionKind {

method match(obj : Object) → MatchResult {
aKind.Type.match(obj)

}

· · ·
}

57 ECOOP’15

Exceptions

The exception hierarchy can now be implemented in Grace

class exceptionKind.name(name : String)
brand(aKind : Brand) → ExceptionKind {

method raise(message : String) → None {
object is aKind { inherits exception; raise(message) }

}

· · ·
}

57 ECOOP’15

Exceptions

The exception hierarchy can now be implemented in Grace

class exceptionKind.name(name : String)
brand(aKind : Brand) → ExceptionKind {

method refine(name : String) → ExceptionKind {
exceptionKind.name(name) brand(aKind.extend)

}

· · ·
}

57 ECOOP’15

Exceptions

The top of the hierarchy:

let Exception = exceptionKind.name "Exception" brand(brand)

58 ECOOP’15

Syntax

O ::= object is B {M } (Object constructor)

τ ::= type { S } | µX .τ | X | (τ | τ) | (τ & τ) | B.Type (Type)

B ::= brand | B + B | X | β (Brand expression)

E ::= τ | B (Static expression)

T ::= let X = E (Static declaration)

59 ECOOP’15

Well-formedness

Taking the type of any brand is well-formed

T ` B . B′

T ` B.Type X

60 ECOOP’15

Subtyping

Reflexivity just for named brands

Σ ` β.Type<: β.Type

Σ ` B1.Type & B2.Type<: τ
Σ ` (B1 + B2).Type<: τ

Σ ` τ <: B1.Type & B2.Type
Σ ` τ <: (B1 + B2).Type

61 ECOOP’15

Type Membership

· ` and(type { S },B.Type) <: τ

object is B {method S { e } } ∈ τ

62 ECOOP’15

Typing

· ` type {S } X

Γ, self : and(type { S },B.Type) ` method S { e } X

Γ ` object is B {method S { e } } : and(type {S },B.Type)

63 ECOOP’15

Gradual Guarantee

Only permit runtime type testing on brand types?

Loses much of the ‘reified objects’ story

64 ECOOP’15

	Background
	Brand Objects
	Formal Model
	Remaining Questions
	Case Studies
	Implementation

