
Object Inheritance Without Classes

Timothy Jones, Michael Homer, James Noble
Victoria University of Wellington
{tim,mwh,kjx}@ecs.vuw.ac.nz

Kim Bruce
Pomona College

kim@cs.pomona.edu

July 21, 2016



Foundations

Objects v Classes

Andrew v Kim

Objects-first v Objectdraw

1



Foundations

Objects v Classes

Andrew v Kim

Objects-first v Objectdraw

1



Foundations

Objects v Classes

Andrew v Kim

Objects-first v Objectdraw

1



Foundations

Know Thy Self

This problem is solved!

( | parent* = other. | )

( | parent* = factory new. | )

2



Foundations

Know Thy Self

This problem is solved!

( | parent* = other. | )

( | parent* = factory new. | )

2



Foundations

Know Thy Self

This problem was supposed to be solved. . .

( | parent* = other. | )

( | parent* = factory new. | )

2



Semantics

Object Inheritance

method graphic(canvas) {
object {

. . .
}

}

def amelia = object {
inherit graphic(canvas)
. . .

}

3



Semantics

Semantics

What does this mean?

inherit graphic(canvas)

Do the inherit semantics actually allow us to implement classes?

I Let’s investigate different object inheritance semanticses

4



Semantics

Semantics

5



Semantics

Semantics

6



Semantics

Semantics

7



Semantics

Semantics

8



Semantics

Semantics

9



Semantics

Implementation

Runnable semantics with PLT Redex

https://github.com/zmthy/graceless-redex

10

https://github.com/zmthy/graceless-redex


Semantics

Reg. Down. Dist. Stable Exist. Mult.
Forwarding
Delegation
Concatenation
Merged
Uniform
Mult. Uniform
Transform U.
Positional U.
Java yes yes no yes class no

(* indicates true for construction, then reversed afterwards)

11



Object Inheritance

Object Inheritance

Objects inherit directly from one another

Three foundational models:

I Forwarding (as in E)

I Delegation (as in JavaScript and Self)

I Concatenation (as in Kevo)

12



Object Inheritance

Forwarding

Requests to inherited methods go directly to inherited object

I Simplest semantics

a
method m(x)

b

m(v)

m(v)

No down-calls (cannot modify existing implementation)

13



Object Inheritance

Forwarding

Requests to inherited methods go directly to inherited object

I Simplest semantics

a
method m(x)

bm(v)

m(v)

No down-calls (cannot modify existing implementation)

13



Object Inheritance

Forwarding

Requests to inherited methods go directly to inherited object

I Simplest semantics

a
method m(x)

bm(v)

m(v)

No down-calls (cannot modify existing implementation)

13



Object Inheritance

Forwarding

Requests to inherited methods go directly to inherited object

I Simplest semantics

a
method m(x)

bm(v)

m(v)

No down-calls (cannot modify existing implementation)

13



Object Inheritance

Down-calls

method graphic(canvas) {
object {

method image { abstract }
method draw {

canvas.render( image )
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia

}

14



Object Inheritance

Delegation
Requests to inherited methods have self bound to original object

I The standard semantics of object inheritance

a
method m(x){ self.k(x) }

b

m(v)

m(v)k(v)

Vampire problem

Surprising behaviour if you’re used to classes

15



Object Inheritance

Delegation
Requests to inherited methods have self bound to original object

I The standard semantics of object inheritance

a
method m(x){ self.k(x) }

b

m(v)

m(v)k(v)

Vampire problem

Surprising behaviour if you’re used to classes

15



Object Inheritance

Delegation
Requests to inherited methods have self bound to original object

I The standard semantics of object inheritance

a
method m(x){ self.k(x) }

b

m(v)

m(v)

k(v)

Vampire problem

Surprising behaviour if you’re used to classes

15



Object Inheritance

Delegation
Requests to inherited methods have self bound to original object

I The standard semantics of object inheritance

a
method m(x){ self.k(x) }

b

m(v)

m(v)k(v)

Vampire problem

Surprising behaviour if you’re used to classes

15



Object Inheritance

Delegation
Requests to inherited methods have self bound to original object

I The standard semantics of object inheritance

a
method m(x){ self.k(x) }

b

m(v)

m(v)k(v)

Vampire problem

Surprising behaviour if you’re used to classes

15



Object Inheritance

Delegation
Requests to inherited methods have self bound to original object

I The standard semantics of object inheritance

a
method m(x){ self.k(x) }

b

m(v)

m(v)k(v)

Vampire problem

Surprising behaviour if you’re used to classes
15



Object Inheritance

Action at a Distance

method graphic(canvas) {
object {

var name := "A graphic"
}

}

def parent = graphic(canvas)

def amelia = object {
inherit parent
name := "Amelia"

}

16



Object Inheritance

Delegation (as in Self)
above = (|

value ← 3.
run = (|| say).
say = (|| ’above’ printLine)

|).

below = (|
parent* = above.
say = (|| ’below’ printLine)

|
run.
value: 5).

other = (|
parent* = above.

| value print).

17



Object Inheritance

Concatenation

Copy the methods and fields from the inherited object

I Removes direct relationship between inheritor and inheritee

a
method m(x)

method k(y)

Changes to inherited object are not reflected in inheriting object

18



Object Inheritance

Concatenation

Copy the methods and fields from the inherited object

I Removes direct relationship between inheritor and inheritee

a
method m(x)

b
method m(x); method k(y)

Changes to inherited object are not reflected in inheriting object

18



Object Inheritance

Concatenation

Copy the methods and fields from the inherited object

I Removes direct relationship between inheritor and inheritee

a
method m(x)

b
method m(x); method k(y)

Changes to inherited object are not reflected in inheriting object

18



Object Inheritance

Registration

method graphic(canvas) {
object {

canvas.register( self )
}

}

def amelia = object {
inherit graphic(canvas)

}

19



Emulating Classes

Emulating Classes

Objects inherit from calls to constructor methods

Two class-like models

I Merged Identity (as in C++)

I Uniform Identity (as in Java)

Cannot inherit from preëxisting objects

20



Emulating Classes

Merged Identity

Inheriting object ‘becomes’ the inherited object

I Registered identities eventually resolve to the intended object

a
method m(x)

method k(y)

a
method m(x); method k(y)

Body-snatchers problem

Objects not stable during construction

21



Emulating Classes

Merged Identity

Inheriting object ‘becomes’ the inherited object

I Registered identities eventually resolve to the intended object

a
method m(x)

method k(y)

a
method m(x); method k(y)

Body-snatchers problem

Objects not stable during construction

21



Emulating Classes

Merged Identity

Inheriting object ‘becomes’ the inherited object

I Registered identities eventually resolve to the intended object

a
method m(x)

method k(y)

a
method m(x); method k(y)

Body-snatchers problem

Objects not stable during construction

21



Emulating Classes

Merged Identity

Inheriting object ‘becomes’ the inherited object

I Registered identities eventually resolve to the intended object

a
method m(x)

method k(y)

a
method m(x); method k(y)

Body-snatchers problem

Objects not stable during construction

21



Emulating Classes

Stability

method graphic(canvas) {
object {

image

method image { abstract }
}

}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia

}

22



Emulating Classes

Uniform Identity

Inherited initialisation code runs as the inheriting object

I Basically magic

method m(x)

b
method k(y)

Uninitialised state during construction

23



Emulating Classes

Uniform Identity

Inherited initialisation code runs as the inheriting object

I Basically magic

method m(x)

b
method m(x); method k(y)

Uninitialised state during construction

23



Emulating Classes

Uniform Identity

Inherited initialisation code runs as the inheriting object

I Basically magic

method m(x)

b
method m(x); method k(y)

Uninitialised state during construction

23



Emulating Classes

Uniform Identity

Inherited initialisation code runs as the inheriting object

I Basically magic

method m(x)

b
method m(x); method k(y)

Uninitialised state during construction

23



Emulating Classes

Emulating Classes

Not very satisfactory as foundational models

I No inheritance from preëxisting objects

Other languages (JavaScript, E) achieve this using other features

24



Emulating Classes

Emulating Classes

Not very satisfactory as foundational models

I No inheritance from preëxisting objects

Other languages (JavaScript, E) achieve this using other features

24



Emulating Classes

Classes in JavaScript
function Above() {

this.value = 3;
this.say();

}

Above.prototype.run = function () { this.say(); };

function Below() { Above.call(this); }

Below.prototype.say = function () { console.log("hello"); };

new Below().run();
25



Emulating Classes

Classes in E

def makeAbove(self) {
def above { to run() { self.say() } }
self ← say()
return above

}

def below extends makeAbove(below) {
to say() { println("hello") }

}

below.run()

26



Conclusion

Multiple Inheritance

Every model except merged identity

Various different conflict resolution schemes

I Named supers

I Method transformations

I Positional inheritance

27



Conclusion

Reg. Down. Dist. Stable Exist. Mult.
Forwarding no no yes yes yes can
Delegation no no* yes no yes can
Concatenation no no* no no yes can
Merged yes no* no no* fresh can’t
Uniform yes yes no yes fresh no
Mult. Uniform yes yes no yes fresh yes
Transform U. yes yes no no fresh yes
Positional U. yes yes no no fresh yes
Java yes yes no yes class no

(* indicates true for construction, then reversed afterwards)

28



Conclusion

Reg. Down. Dist. Stable Exist. Mult.
Forwarding no no yes yes yes can
Delegation no no* yes no yes can
Concatenation no no* no no yes can
Merged yes no* no no* fresh can’t
Uniform yes yes no yes fresh no
Mult. Uniform yes yes no yes fresh yes
Transform U. yes yes no no fresh yes
Positional U. yes yes no no fresh yes
Java yes yes no yes class no

(* indicates true for construction, then reversed afterwards)

29



Conclusion

Conclusion

No obviously superior semantics for object inheritance

Emulating classes requires magic or complicated language features

Ultimately depends on the design goals for the language

30



Conclusion

Lessons

OO language designers

I Simple foundations do not imply simple design

Everyone else

I Problems are hidden in solved designs

31



Conclusion

Lessons

OO language designers

I Simple foundations do not imply simple design

Everyone else

I Problems are hidden in solved designs

31



Extra Slides

Semantics

32



Extra Slides

Forwarding (as in E)

def above {
to run() {

above.say()
}

to say() {
println("above")

}
}

33



Extra Slides

Forwarding (as in E)

def above {
to run() {

above.say()
}

to say() {
println("above")

}
}

def below extends above {
to say() {

println("below")
}

}

below.run()

33



Extra Slides

Delegation (as in Self)

above = (|
value ← 3.
run = (|| say).
say = (|| ’above’ printLine)

|).

below = (|
parent* = above.
say = (|| ’below’ printLine)

| run).

34



Extra Slides

Delegation (as in Self)

above = (|
value ← 3.
run = (|| say).
say = (|| ’above’ printLine)

|).

below = (|
parent* = above.
say = (|| ’below’ printLine)

| value: 5).

other = (|
parent* = above.

| value print).

34



Extra Slides

Delegation (as in JavaScript-ish)

let above = {};
above.value = 3;
above.run = function () { this.say(); };
above.say = function () { console.log("above"); };

let below = Object.create(above);
below.say = function () { console.log("below"); };
below.value = 5;

below.run();
console.log(above.value 6= below.value);

35


	Foundations
	Semantics
	Object Inheritance
	Emulating Classes
	Conclusion
	Extra Slides

