Questioning Gradual Typing

Timothy Jones <timamontoux.com>
November 4, 2018

Montoux

- Gradual typing is morally incorrect

- Gradual typing is morally incorrect

- We're all monsters now

- The Gradual Guarantee
- Dynamic Type Errors

- Gradual checks in Grace

- The Gradual Guarantee

- Is it a useful property?

- Dynamic Type Errors

- Gradual checks in Grace

- The Gradual Guarantee

- Is it a useful property?

- Dynamic Type Errors

- What determines if a value satisfies a type assertion?

- Gradual checks in Grace

- The Gradual Guarantee

- Is it a useful property?

- Dynamic Type Errors

- What determines if a value satisfies a type assertion?

- Gradual checks in Grace

- How should we interpret types?

The Gradual Guarantee

If an expression e evaluates without error in one step to e,
then any e} where € C e; also evaluates in zero or more steps
to e}, where €, C e,.

Grace

method assertString(x : String) {}

method classify(o : Unknown) — String {
try {
assertString(o)
return “string”
} catch { e : TypeError —
return “not string”

assertString(String x) {}

classify(o) {
try {
assertString(o);
return “string”;
} catch(e) {
return “not string”;

Typed Racket

(require/typed racket
[(identity assertString) (— Any String)])

(define (classify o)
(with-handlers ([exn:fail:contract? (X (e) “not string”)])
(assertString o)
“string”))

Reticulated Python

def assertString(x: str):
pass

def classify(o):
try:
assertString(o)
return “string”
except:
return “not string”

Higher-order Casts

def assertFloatList(L: List(float)):
forxin L:
pass

def classify(o):
try:
assertFloatList(o)
return “float list”
except CastError:
return “checked, it's not a float list”
except RuntimeCheckError:
return “oops, it's not a float list”

classify([1, “x"])

function errorhandler(Serrno, Serrstr, Serrfile, Serrline) {
if (Serrno == E_RECOVERABLE_ERROR) {
print “not ”
return true;

}

return false;

function assertString(string $x) {}
function classify(o) {
set_error_handler(‘errorhandler’);
assertString(o);
print “string”

A New Gradual Guarantee?

If an expression ey containing no traps for failed typecasts
evaluates without error in one step to e, then any e} where
e} C eq also evaluates in zero or more steps to €, where

e, C ey

10

Another Solution

- Ensure that type errors are irrevocably fatal

- Maybe calculi can get away with this...

"

Gradual Guarantee

- How important is the guarantee?

- What other language constructs interfere with it?

12

The Source of Truth

Who Decides What Fails?

- When should a dynamically well-typed program fail?

13

Who Decides What Fails?

- When should a dynamically well-typed program fail?

- What if every object satisfies every assertion?

13

Grace(ish)

method forget(x : Object) — Unknown { x }
method remember[T](x : Unknown) — T { x }

type Sized = interface { size —+ Number }
def sized = object { method size —+ Number {5}}

remember[Sized](forget(sized))

14

Reticulated Python

def forget(x: {}) — any:
return x

def remember(x: any) — {“size”: int}:
return x

class Sized(object):
def size(self):

return 5

remember(forget(Sized()))

15

Typed Racket

(require/typed racket
[(identity remember) (— Any Sized)])

(define-type Sized
(Object [size (— Integer)]))

(define sized : Sized
(make-object (class object%
(super-new)
(define/public (size) 5))))
(define (forget [x : (Object)]) : Any x)

(remember (forget sized))

In Practice

- The object’s interface determines if a cast fails

In Practice

- The object’s interface determines if a cast fails

- What does the theory say?

([size : Z] < ?) (? < [size : Z]) [size = 9]

forget(t) = [id = ? ¢(x : []) x]-id(t)

remember(t,T) = [id = T ¢(x: ?) x].id(t)

remember(forget([size = 5]), [size : Z])

19

forget(t) = [id = ? ¢(x : []) x]-id(t)

remember(t) = [id = [size : Z] ¢(x : ?) x].id(¢t)

remember(forget([size = 5]))

20

Cast Insertion

forget(t) = [id = ? ¢(x: []) (2 < []) .id ()

remember(t) = [id = [size : Z] <(x : ?) ([size : Z] <= ?) x].id(t)

remember(forget([size = 5]))

21

Stuck Cast

([size : Z] < ?) (? < []) [size = 5]

22

What Happened?

- Subsumption

23

What Happened?

- Subsumption

- There is no path to a fully-typed program

23

What Happened?

- Subsumption
- There is no path to a fully-typed program

- Is this a desirable property of gradual typing?

23

Object-Oriented Types

Extensible Contracts

type Contract[T] = interface {
matches(value) — MatchResult[T]

}
type MatchResult[T] = MatchFailure U MatchSuccess[T]

type MatchSuccess[T] = true N interface {
result - T

}

2%

Extensible Contracts

method m(x : A) — B {

25

Extensible Contracts

method m(x) {
def pre = A.matches(x)
pre.assert
def x = pre.result
def post = B.matches(---)
post.assert
post.result

26

Extensible Contracts

- Flat

- result is the tested object

27

Extensible Contracts

- Flat

- result is the tested object

- Chaperone

- result is a transparent proxy around the object

27

Extensible Contracts

- Flat

- result is the tested object

- Chaperone

- result is a transparent proxy around the object

+ Impersonator

- result is whatever the match wants

27

Extensible Contracts

- Flat

- result is the tested object

- Chaperone

- result is a transparent proxy around the object

+ Impersonator

- result is whatever the match wants

- Except it must satisfy T: MatchSuccess is a chaperone

27

Erasing Checks

- A dialect might be free to erase checks

- Does it need to prove the erasure is behaviour-preserving?

28

Questioning Gradual Typing

Questions for Grace

- Is it appropriate for MatchResult to be a boolean?
- What class of exception is a TypeError?
- Should we consider subsumption during type tests?

- How can a dialect communicate what it knows to the
runtime?

29

	The Gradual Guarantee
	The Source of Truth
	Object-Oriented Types
	Questioning Gradual Typing

