
Questioning Gradual Typing

Timothy Jones <tim@montoux.com>
November 4, 2018

Montoux



Last Time

• Gradual typing is morally incorrect

• We’re all monsters now

1



Last Time

• Gradual typing is morally incorrect

• We’re all monsters now

1



This Time

• The Gradual Guarantee

• Is it a useful property?

• Dynamic Type Errors

• What determines if a value satisfies a type assertion?

• Gradual checks in Grace

• How should we interpret types?

2



This Time

• The Gradual Guarantee

• Is it a useful property?

• Dynamic Type Errors

• What determines if a value satisfies a type assertion?

• Gradual checks in Grace

• How should we interpret types?

2



This Time

• The Gradual Guarantee

• Is it a useful property?

• Dynamic Type Errors

• What determines if a value satisfies a type assertion?

• Gradual checks in Grace

• How should we interpret types?

2



This Time

• The Gradual Guarantee

• Is it a useful property?

• Dynamic Type Errors

• What determines if a value satisfies a type assertion?

• Gradual checks in Grace

• How should we interpret types?

2



The Gradual Guarantee



If an expression e1 evaluates without error in one step to e2,
then any e′1 where e′1 ⊑ e1 also evaluates in zero or more steps
to e′2 where e′2 ⊑ e2.

3



Grace

method assertString(x : String) {}

method classify(o : Unknown)→ String {
try {

assertString(o)
return “string”

} catch { e : TypeError→
return “not string”

}
}

4



Dart

assertString(String x) {}

classify(o) {
try {

assertString(o);
return “string”;

} catch(e) {
return “not string”;

}
}

5



Typed Racket

(require/typed racket
[(identity assertString) (→ Any String)])

(define (classify o)
(with-handlers ([exn:fail:contract? (λ (e) “not string”)])

(assertString o)
“string”))

6



Reticulated Python

def assertString(x: str):
pass

def classify(o):
try:

assertString(o)
return “string”

except:
return “not string”

7



Higher-order Casts

def assertFloatList(l: List(float)):
for x in l:

pass

def classify(o):
try:

assertFloatList(o)
return “float list”

except CastError:
return “checked, it’s not a float list”

except RuntimeCheckError:
return “oops, it’s not a float list”

classify([1, “x”])
8



Hack

function errorhandler($errno, $errstr, $errfile, $errline) {
if ($errno == E_RECOVERABLE_ERROR) {

print “not ”
return true;

}
return false;

}

function assertString(string $x) {}
function classify(o) {

set_error_handler(‘errorhandler’);
assertString(o);
print “string”

}
9



A New Gradual Guarantee?

If an expression e1 containing no traps for failed typecasts
evaluates without error in one step to e2, then any e′1 where
e′1 ⊑ e1 also evaluates in zero or more steps to e′2 where
e′2 ⊑ e2.

10



Another Solution

• Ensure that type errors are irrevocably fatal

• Maybe calculi can get away with this...

11



Gradual Guarantee

• How important is the guarantee?

• What other language constructs interfere with it?

12



The Source of Truth



Who Decides What Fails?

• When should a dynamically well-typed program fail?

• What if every object satisfies every assertion?

13



Who Decides What Fails?

• When should a dynamically well-typed program fail?

• What if every object satisfies every assertion?

13



Grace(ish)

method forget(x : Object)→ Unknown { x }

method rememberJTK(x : Unknown)→ T { x }

type Sized = interface { size→ Number }
def sized = object { method size→ Number { 5 } }

rememberJSizedK(forget(sized))

14



Reticulated Python

def forget(x: {})→ any:
return x

def remember(x: any)→ {“size”: int}:
return x

class Sized(object):
def size(self):

return 5

remember(forget(Sized()))

15



Typed Racket

(require/typed racket
[(identity remember) (→ Any Sized)])

(define-type Sized
(Object [size (→ Integer)]))

(define sized : Sized
(make-object (class object%

(super-new)
(define/public (size) 5))))

(define (forget [x : (Object)]) : Any x)

(remember (forget sized))
16



In Practice

• The object’s interface determines if a cast fails

• What does the theory say?

17



In Practice

• The object’s interface determines if a cast fails

• What does the theory say?

17



Ob⟨·⟩
<:

⟨[size : Z] ⇐ ?⟩ ⟨?⇐ [size : Z]⟩ [size= 5]

18



Ob?
<:

forget(t) = [id= ? ς(x : []) x].id(t)

remember(t, T) = [id= T ς(x : ?) x].id(t)

remember(forget([size= 5]), [size : Z])

19



Ob?
<:

forget(t) = [id= ? ς(x : []) x].id(t)

remember(t) = [id= [size : Z] ς(x : ?) x].id(t)

remember(forget([size= 5]))

20



Cast Insertion

forget(t) = [id= ? ς(x : []) ⟨?⇐ []⟩ x].id(t)

remember(t) = [id= [size : Z] ς(x : ?) ⟨[size : Z] ⇐ ?⟩ x].id(t)

remember(forget([size= 5]))

21



Stuck Cast

⟨[size : Z] ⇐ ?⟩ ⟨?⇐ []⟩ [size= 5]

22



What Happened?

• Subsumption

• There is no path to a fully-typed program

• Is this a desirable property of gradual typing?

23



What Happened?

• Subsumption

• There is no path to a fully-typed program

• Is this a desirable property of gradual typing?

23



What Happened?

• Subsumption

• There is no path to a fully-typed program

• Is this a desirable property of gradual typing?

23



Object-Oriented Types



Extensible Contracts

type ContractJTK = interface {
matches(value)→ MatchResultJTK

}

type MatchResultJTK = MatchFailure ∪ MatchSuccessJTK
type MatchSuccessJTK = true ∩ interface {

result→ T
}

24



Extensible Contracts

method m(x : A)→ B {
· · ·

}

25



Extensible Contracts

method m(x) {
def pre = A.matches(x)
pre.assert
def x = pre.result
def post = B.matches(· · · )
post.assert
post.result

}

26



Extensible Contracts

• Flat

• result is the tested object

• Chaperone

• result is a transparent proxy around the object

• Impersonator

• result is whatever the match wants

• Except it must satisfy T: MatchSuccess is a chaperone

27



Extensible Contracts

• Flat

• result is the tested object

• Chaperone

• result is a transparent proxy around the object

• Impersonator

• result is whatever the match wants

• Except it must satisfy T: MatchSuccess is a chaperone

27



Extensible Contracts

• Flat

• result is the tested object

• Chaperone

• result is a transparent proxy around the object

• Impersonator

• result is whatever the match wants

• Except it must satisfy T: MatchSuccess is a chaperone

27



Extensible Contracts

• Flat

• result is the tested object

• Chaperone

• result is a transparent proxy around the object

• Impersonator

• result is whatever the match wants

• Except it must satisfy T: MatchSuccess is a chaperone

27



Erasing Checks

• A dialect might be free to erase checks

• Does it need to prove the erasure is behaviour-preserving?

28



Questioning Gradual Typing



Questions for Grace

• Is it appropriate for MatchResult to be a boolean?

• What class of exception is a TypeError?

• Should we consider subsumption during type tests?

• How can a dialect communicate what it knows to the
runtime?

29


	The Gradual Guarantee
	The Source of Truth
	Object-Oriented Types
	Questioning Gradual Typing

