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Foundations

Inheritance

Code reuse

Relationships between classes
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Foundations

Inheritance
abstract class Graphic {

var name := "A graphic"
var canvas
constructor(canvas) {

self.canvas := canvas
canvas.register(self)
draw

}
abstract method image
method draw {

canvas.render(image)
}
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Foundations

Inheritance
abstract class Graphic {

var name := "A graphic"
var canvas
constructor(canvas) {

self.canvas := canvas
canvas.register(self)
draw

}
abstract method image
method draw {

canvas.render(image)
}

}

class Amelia extends Graphic {
def image = images.amelia
constructor {

super(canvas)
name := "Amelia"

}
}

def amelia = new Amelia
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Foundations

Foundations

What is a class?

I A factory (constructs new objects)

I A type (classifies the constructed objects)

Other solutions to typing (dynamic, structural)

We can implement factories with methods and objects

Are classes redundant?
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Foundations

Objects-First

Objects define their own state and behaviour

object {
// Methods and initialisation code
· · ·

}

Classes are constructors for objects with the same implementation

method make {
object { · · · }

}
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Foundations

Inheritance

Code reuse

I Imperative rather than declarative

I Implementation reuse

Relationships between classes objects
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Foundations

In Other Languages

Self

( | parent* = factory new. | )

JavaScript

Bar.prototype = foo;

Lua, Emerald, Tcl, E, Kevo . . .
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Classes as Objects

Translating Classes
abstract class Graphic {

var name := "A graphic"
var canvas
constructor(canvas) {

self.canvas := canvas
canvas.register(self)
draw

}
abstract method image
method draw {

canvas.render(image)
}
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Classes as Objects

Translating Classes
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}
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draw

method image { abstract }
method draw {

canvas.render(image)
}
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Classes as Objects

Translating Classes
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia
name := "Amelia"

}
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Classes as Objects

Semantics

What does this mean?

inherit graphic(canvas)

Do the inherit semantics actually allow us to implement classes?

I Let’s investigate different object inheritance semanticses
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Concerns

Concerns

Considering these aspects:

I Registration

I Down-calls

I Action at a Distance

I Stability

I Preëxistence

I Multiplicity
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Concerns

Registration
method graphic(canvas) {

object {
var name := "A graphic"

canvas.register( self )
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia
name := "Amelia"

}
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Concerns

Down-calls
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render( image )
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia
name := "Amelia"

}
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Concerns

Action at a Distance
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia
name := "Amelia"

}
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Concerns

Stability
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia
name := "Amelia"

}
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Concerns

Preëxistence
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def parent = graphic(canvas)

def amelia = object {
inherit parent
def image = images.amelia
name := "Amelia"

}
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Concerns

Multiplicity
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def amelia = object {
inherit graphic(canvas)
inherit other
def image = images.amelia
name := "Amelia"

}
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Object Inheritance

Object Inheritance

Objects inherit directly from one another

Three foundational models:

I Forwarding (as in E)

I Delegation (as in JavaScript and Self)

I Concatenation (as in Kevo)
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Object Inheritance

Forwarding

Requests to inherited methods go directly to inherited object

I Simplest semantics

I No down-calls (cannot modify existing implementation)

method image { abstract }
method draw {

canvas.render( image )
}
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Object Inheritance

Delegation

Requests to inherited methods have self bound to original object

I The standard semantics of object inheritance

I Surprising behaviour if you’re used to classes

def amelia = object {
inherit parent
def image = images.amelia
name := "Amelia"

}

19



Object Inheritance

Concatenation

Copy the methods and fields from the inherited object

I Removes direct relationship between inheritor and inheritee

I Changes to inherited object are not reflected in inheriting object

I Potentially costly clone operation
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Object Inheritance

Registration

None of the models support registration

canvas.register( self )
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Emulating Classes

Emulating Classes

Objects inherit from calls to constructor methods

Two class-like models

I Merged Identity (as in C++)

I Uniform Identity (as in Java)
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Emulating Classes

Merged Identity

Inheriting object ‘becomes’ the inherited object

I Registered identities eventually resolve to the intended object

I Objects not stable during construction

draw

method image { abstract }
method draw {

canvas.render(image)
}
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Emulating Classes

Uniform Identity

Inherited initialisation code runs as the inheriting object

Basically magic
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Emulating Classes

Emulating Classes

Not very satisfactory as foundational models

Other languages (JavaScript, E) manage to do it nicely
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Conclusion

Multiple Inheritance

Every model except merged identity

Various different conflict resolution schemes
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Conclusion

Implementation

Formal description of each model’s semantics

Runnable semantics with PLT Redex
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Conclusion

Conclusion

No obviously superior semantics for object inheritance

Emulating classes requires magic or complicated language features

Ultimately depends on the design goals for the language
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