
Object Inheritance Without Classes

Timothy Jones

Victoria University of Wellington
tim@ecs.vuw.ac.nz

April 28, 2016

mailto:tim@ecs.vuw.ac.nz


Foundations

Inheritance

Code reuse

Relationships between classes

1



Foundations

Inheritance
abstract class Graphic {

var name := "A graphic"
var canvas
constructor(canvas) {

self.canvas := canvas
canvas.register(self)
draw

}
abstract method image
method draw {

canvas.render(image)
}

} 2



Foundations

Inheritance
abstract class Graphic {

var name := "A graphic"
var canvas
constructor(canvas) {

self.canvas := canvas
canvas.register(self)
draw

}
abstract method image
method draw {

canvas.render(image)
}

}

class Amelia extends Graphic {
def image = images.amelia
constructor {

super(canvas)
name := "Amelia"

}
}

def amelia = new Amelia

2



Foundations

Foundations

What is a class?

I A factory (constructs new objects)

I A type (classifies the constructed objects)

Other solutions to typing (dynamic, structural)

We can implement factories with methods and objects

Are classes redundant?

3



Foundations

Foundations

What is a class?

I A factory (constructs new objects)

I A type (classifies the constructed objects)

Other solutions to typing (dynamic, structural)

We can implement factories with methods and objects

Are classes redundant?

3



Foundations

Foundations

What is a class?

I A factory (constructs new objects)

I A type (classifies the constructed objects)

Other solutions to typing (dynamic, structural)

We can implement factories with methods and objects

Are classes redundant?

3



Foundations

Objects-First

Objects define their own state and behaviour

object {
// Methods and initialisation code
· · ·

}

Classes are constructors for objects with the same implementation

method make {
object { · · · }

}

4



Foundations

Inheritance

Code reuse

I Imperative rather than declarative

I Implementation reuse

Relationships between classes objects

5



Foundations

In Other Languages

Self

( | parent* = factory new. | )

JavaScript

Bar.prototype = foo;

Lua, Emerald, Tcl, E, Kevo . . .

6



Classes as Objects

Translating Classes
abstract class Graphic {

var name := "A graphic"
var canvas
constructor(canvas) {

self.canvas := canvas
canvas.register(self)
draw

}
abstract method image
method draw {

canvas.render(image)
}

} 7



Classes as Objects

Translating Classes
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

7



Classes as Objects

Translating Classes
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

class Amelia extends Graphic {
def image = images.amelia
constructor {

super(canvas)
name := "Amelia"

}
}

def amelia = new Amelia

8



Classes as Objects

Translating Classes
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia
name := "Amelia"

}

8



Classes as Objects

Semantics

What does this mean?

inherit graphic(canvas)

Do the inherit semantics actually allow us to implement classes?

I Let’s investigate different object inheritance semanticses

9



Concerns

Concerns

Considering these aspects:

I Registration

I Down-calls

I Action at a Distance

I Stability

I Preëxistence

I Multiplicity

10



Concerns

Registration
method graphic(canvas) {

object {
var name := "A graphic"

canvas.register( self )
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia
name := "Amelia"

}

11



Concerns

Down-calls
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render( image )
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia
name := "Amelia"

}

12



Concerns

Action at a Distance
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia
name := "Amelia"

}

13



Concerns

Stability
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def amelia = object {
inherit graphic(canvas)
def image = images.amelia
name := "Amelia"

}

14



Concerns

Preëxistence
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def parent = graphic(canvas)

def amelia = object {
inherit parent
def image = images.amelia
name := "Amelia"

}

15



Concerns

Multiplicity
method graphic(canvas) {

object {
var name := "A graphic"
canvas.register(self)
draw

method image { abstract }
method draw {

canvas.render(image)
}

}
}

def amelia = object {
inherit graphic(canvas)
inherit other
def image = images.amelia
name := "Amelia"

}

16



Object Inheritance

Object Inheritance

Objects inherit directly from one another

Three foundational models:

I Forwarding (as in E)

I Delegation (as in JavaScript and Self)

I Concatenation (as in Kevo)

17



Object Inheritance

Forwarding

Requests to inherited methods go directly to inherited object

I Simplest semantics

I No down-calls (cannot modify existing implementation)

method image { abstract }
method draw {

canvas.render( image )
}

18



Object Inheritance

Delegation

Requests to inherited methods have self bound to original object

I The standard semantics of object inheritance

I Surprising behaviour if you’re used to classes

def amelia = object {
inherit parent
def image = images.amelia
name := "Amelia"

}

19



Object Inheritance

Concatenation

Copy the methods and fields from the inherited object

I Removes direct relationship between inheritor and inheritee

I Changes to inherited object are not reflected in inheriting object

I Potentially costly clone operation

20



Object Inheritance

Registration

None of the models support registration

canvas.register( self )

21



Emulating Classes

Emulating Classes

Objects inherit from calls to constructor methods

Two class-like models

I Merged Identity (as in C++)

I Uniform Identity (as in Java)

22



Emulating Classes

Merged Identity

Inheriting object ‘becomes’ the inherited object

I Registered identities eventually resolve to the intended object

I Objects not stable during construction

draw

method image { abstract }
method draw {

canvas.render(image)
}

23



Emulating Classes

Uniform Identity

Inherited initialisation code runs as the inheriting object

Basically magic

24



Emulating Classes

Emulating Classes

Not very satisfactory as foundational models

Other languages (JavaScript, E) manage to do it nicely

25



Conclusion

Multiple Inheritance

Every model except merged identity

Various different conflict resolution schemes

26



Conclusion

Implementation

Formal description of each model’s semantics

Runnable semantics with PLT Redex

27



Conclusion

Conclusion

No obviously superior semantics for object inheritance

Emulating classes requires magic or complicated language features

Ultimately depends on the design goals for the language

28


	Foundations
	Classes as Objects
	Concerns
	Object Inheritance
	Emulating Classes
	Conclusion

